新闻资讯

质量为本、客户为根、勇于拼搏、务实创新

< 返回新闻资讯列表

Python怎么实现elgamal数字签名算法,python%e

发布时间:2023-10-10 02:17:10

Python怎样实现elgamal数字签名算法

要实现ElGamal数字签名算法,可以依照以下步骤:

  1. 生成密钥对:
  • 选择一个大素数p作为模数。
  • 选择一个生成元g,确保g是p的一个原根。
  • 随机选择一个私钥x,满足0 < x < p-1。
  • 计算公钥y = g^x mod p。
  1. 签名:
  • 随机选择一个整数k,满足0 < k < p-1。
  • 计算r = g^k mod p。
  • 计算e = H(m),其中H是一个哈希函数,用于将消息m映照为一个整数。
  • 计算s = (e - x r) k^(⑴) mod (p⑴),其中k^(⑴)是k的模逆。
  • 终究的签名为(r, s)。
  1. 验证:
  • 计算e = H(m)。
  • 计算w = s^(⑴) mod (p⑴),其中s^(⑴)是s的模逆。
  • 计算u1 = e w mod (p⑴) 和 u2 = r w mod (p⑴)。
  • 计算v = (g^u1 * y^u2 mod p) mod (p⑴)。
  • 如果v等于r,则签名有效;否则,签名无效。

下面是一个Python实现的示例代码:

import random
def powmod(a, b, p):
result = 1
while b > 0:
if b % 2 == 1:
result = (result * a) % p
a = (a * a) % p
b = b // 2
return result
def eg_sign(message, p, g, x, k, hash_func):
r = powmod(g, k, p)
e = hash_func(message)
s = ((e - x * r) * powmod(k, ⑴, p⑴)) % (p⑴)
return (r, s)
def eg_verify(message, signature, p, g, y, hash_func):
r, s = signature
e = hash_func(message)
w = powmod(s, ⑴, p⑴)
u1 = (e * w) % (p⑴)
u2 = (r * w) % (p⑴)
v = (powmod(g, u1, p) * powmod(y, u2, p)) % p % (p⑴)
return v == r
# 选择一个大素数p和生成元g
p = 107
g = 2
# 随机选择私钥x
x = random.randint(1, p⑵)
# 计算公钥y
y = powmod(g, x, p)
# 消息
message = "Hello, world!"
# 哈希函数
def hash_func(message):
return hash(message) % (p⑴)
# 随机选择k
k = random.randint(1, p⑵)
# 签名
signature = eg_sign(message, p, g, x, k, hash_func)
print("Signature:", signature)
# 验证
valid = eg_verify(message, signature, p, g, y, hash_func)
print("Valid:", valid)

注意:这只是一个简单的示例,实际利用中需要使用更大的素数p和生成元g,并选择更安全的哈希函数。